Context-dependent word duration modelling for robust speech recognition
نویسندگان
چکیده
Conventional hidden Markov models (HMMs) have weak duration constraints. This may cause the decoder to produce word matches with unrealistic durations in noisy situations. This paper describes techniques for modelling context-dependent word duration cues and incorporating them directly in a multi-stack decoding algorithm. The proposed model is capable of penalising duration constraints of a word depending on its context. Experiments on connected digit recognition show that the new system can significantly improve recognition performance at different noise levels.
منابع مشابه
Allophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کاملContext-dependent duration modelling for continuous speech recognition
This paper presents a pilot study of using contextdependent segmental duration for continuous speech recognition in a domain-speci c application. Di erent modelling strategies are proposed for function words and content words. Stress level, word position in utterance and phone position in word are identi ed to be the 3 most crucial factors a ecting segmental duration in this particular applicat...
متن کاملRobust connected word speech recognition using weighted viterbi algorithm and context-dependent temporal constraints
This paper addresses the problem of connected word speech recognition with signals corrupted by additive and convolutional noise. Context-dependent temporal constraints are proposed and compared with the ordinary temporal restrictions, and used in combination with the weighted Viterbi algorithm which had been tested with isolated word recognition experiments in previous papers. Connected-word r...
متن کاملImproved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition
Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...
متن کاملAn Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005